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Abstract

Using nhoncommutative geometry we 8@1) gauge theory on the permutation graig Unlike
usual lattice gauge theories the use of a non-Abelian group here as spacetime corresponds to a
background Riemannian curvature. In this background we solve séiraﬂd spin 1 equations of
motion, including the spin 1 or ‘photon’ case in the presence of sources, i.e. a theory of classical
electromagnetism. Moreover, we solve tti¢l) Yang—Mills theory (this differs from thé/ (1)
Maxwell theory in noncommutative geometry), including the moduli space of flat connections. We
show that the Yang—Mills action has a simple form in terms of Wilson loops in the permutation
group, and we discuss aspects of the quantum theory.
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1. Introduction

As an attempt to make quantum theory computable it is common to consider its
formulation on a flat lattic&Z” in place of spacetim®&”. On the other hand, using mod-
ern methods of noncommutative geometry it is possible to formulate such constructions
more ‘geometrically’ in terms of a noncommutative exterior algebra of differential forms
and a Cartan calculus. In lattice approximations, the finite differences are indeed intrinsi-
cally noncommutative in the sense that they should be formulated better as bimodules over
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functions: the product of a function and a finite differential is naturally given by the value
of the function either at the start-point or the end-point of the differential, and the two are
different. Hence functions and 1-forms obgylx # (dx) f, which means that such a more
general noncommutative geometry is the natural way to do lattice theory.

In this paper we want to go much beyond this initial observation. In fact such meth-
ods of noncommutative geometry apply equally well for any Hopf algebra and hence
in particular for any finite groups. This offers the possibility for the first time of a
natural ‘geometric’ lattice approximation by non-Abelian finite groups rather than by a
7" or (Zy)" lattice. The Abelian case is also interesting in noncommutative geometry,
e.g.[1] or more recentl\{2]. However, the nhoncommutative theory comes into its own
when we seek to model a space or spacetime with spherical or other topology. In par-
ticular, it has been shown recently [B] that just as cyclic groupg,, approximate tori,
permutation groups such &g (permutations on three elements) are more like compact
semisimple Lie groups. It was shown th&f has a natural noncommutative Riemannian
structure with Ricci curvature essentially proportional to the metric and translation-invariant
(like a classical spheres®). The curvature originates in the non-Abelianess of the
groupSs.

Other metrics and connections also exist and in principle one could proceed to
gravity and quantum gravity o using these methods. Before attempting such a project
one should consider the simpler problem of spins%O,l fields moving in the natu-
ral Killing-form metric Riemannian background. This is what we do in the present
paper. In the natural 3-bein coordinates, the Killing metric just turns out t8béhe
Euclideansa,. Using this we then define the Hodgeoperator and hence such things as
the Maxwell and Yang—Mills LagrangiangF)* A % F. The classical theory particularly
of ‘electromagnetism’ explores in effect the classical noncommutative geomeSgy \ofe
compute the quantum deRham cohomology (it is nontrivial) and linear wave equations,
etc. inSection 2 We also obtain point sources and dipole sources for the Maxwell field.
We explain the required Coulomb gauge fixing and more or less completely treat the linear
system.

In Section 3we look at the nonlineat/ (1) Yang—Mills theory withF = dA + A A A
(this is not the same as the linearised Maxwell theory due to the non(super)commutativity
of the differential forms). We find the moduli space of flat connections, which turns out to
be nontrivial. We also look for instantons but show that none exist obeying the required
reality conditions. Finally, we show that the Lagrangian in the Yang—Mills case has a nice
description in terms of a real ‘kinetic’ term and Wilson loops around elementary plaquettes

L =228"22 + 2222 — W, (A) + cyclic rotations

whereu, v, w are the transpositions 6§ and label the tangent space at each poiatSs.
Au, €tc. are real positive fields built from (essentially we use polar coordinates for the
values ofA) and

Wu(A)(x) = 1+ A" ()L + A" (xw) (1 + A" (xuv)) (1 + A” (xw))

is the holonomy around a small square atith sidesu, v, u, w in the group. It is remark-
able that we do not put this in by hand as some kind of approximation (as one does in
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conventional lattice theory), it is literally what we obtain f6* A % F using the non-
commutative differential geometry ofs and the Riemannian structure frof8]. This
extends what has been observed for latii¢e e.g. in[1]. Our Riemannian geometry
approach works equally for essentially all guantum groups and many other systems, though
we do not discuss them here.

We conclude inSection 4with some remarks about the quantum theory. There being
only six points inSs, functional integrals over our fields become multiple usual integrals.
We formulate the required actions based on minimal coupling and also explain how to
compute the partition function and expectation values of Wilson 1§8pgA) (x)). All of
this should be viewed as a warm up to functional integrals over metrics and their connec-
tions, i.e. quantum gravity where our finite method should be particularly useful. An intro-
duction to the framework of gravity in our approach (which plays only a background role) is
in [4].

1.1. Preliminaries

Here we recall very briefly the formalism of noncommutative differential geometry for
finite groupsG. This Hopf algebra approach to noncommutative geometry coming out of
quantum groups should not be confused with the approaches to noncommutative geometry
of Connegd5], though the treatment of 1-forms as bimodules is common to both, and there
are some models where the two methods begin nontrivially to ‘convige’

In the quantum groups approach, we work with the algéli@] of functions onG. We
do not consider derivations as vector fields (this does not work here) but rather we define
£2(G) the exterior algebra of forms asZa-graded algebra witd a super-derivation and
d? = 0. Using the construction ¢6] this is specified in a bicovariant manner entirely by an
Ad-stable subsetnot containing the group identity The 1-forms have abadig, : a € C}
overC[G], bimodule structure and d on functions

Q' =(ea), euf =Ra(flea,  df =) (0“fles, =R, —id,
whereR,(f)(x) = f(xa) for all x € G anda € C. The elements of are the ‘allowed

directions’. The partial derivatives defined here obey a braidedeibniz rule

9°(fg) = 3°(f)g + Ra()3(9). V[, g € C[G].

The higher forms are a certain quotient of the tensor power of 1-forms where we set to 0
those ‘symmetric’ combinations invariant under a braided-symmetrization operator defined
by a certain braiding’. The d is extended through the Maurer—Cartan relation

de, =e, NO+0 Neg, GEZea
a

and the graded Leibniz rule. From this one also finds that

do =[0,a}, Vae 2(G)
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using the graded anti-commutator. Also

g N Neg, [ = Raya,(flea N Neg,,,

where the produats - - - a,, defines a naturak-valued degree of2 (G). Further details of
the set-up including the required quotient at degree 2 for gedeaak in[3].
For S3 we take generators and relations, and conjugacy class

uc=v"=e, Uvu = vuv = w, C={u,v, w}.
S0t = (e, ey, ey). Because every element@has order 2, we have
R,0% = —9°, (842 = —23°
foralla = u, v, w. Itis also easy to see that degree 2 relations
ey Ney+eyAey+ey e, =0,
ey Neyt+eyNey+ey, ANey =0, ey nNe,=ey Ney=eyANey, =0

hold. It is well-known that these are in fact the only relations in degree 2 in the Woronowicz
construction (an actual proof is [8]). Hence2® is 3D (3-dimensional) while2? is 4D.
As a basis of the latter we choose (for concreteness)

%= (ew N ey, ey Aey, ey Aey, ey Aey).

Next, one easily computes the consequences of the degree 2 relations in higher degree, which
we call the ‘quadratic prolongation’ a2. It has been used fds in [8] and recently, e.g.
in [9,3] and one has

ey NeyNey=epy Ney ANey, = —ey ANey Ney = —e, Aey Aey

and the two cyclic rotations — v — w — u of these relations. Hence there are three
independent 3-forms

3= (ew ANey ANey, ey ANey A ey, ey Aey Aey)
in the quadratic prolongation. Similarly there is one independent 4-form with

Top=e, Ney Ney ANey =ey Aey Aey A ey

=—ep NeygANeyANey, = —ey ANey ANey A ey

and equal to the two cyclic rotations of these equations (Top is invariant). Any expression
of the forme, A ep A e, A ey is 0 asis any expression with a repetition in the outer (or inner)
two positions. It is easy to see that the basic 2-forms mutually commute and that Top has
trivial total G-degree.

It turns out thatthe quadratic prolongation in this case is exactly £2(S3), i.e. there are
no further relations imposed by the braided-antisymmetrization process in higher degree in
this case. This is not expected to hold in general and we have not seen an actual proof of
this fact for S3, therefore, we include it now for completeness.
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Lemmal.1l. Therearenofurther relationsfromWbronowicz sbraided-antisymmetrization
procedure, i.e. £2(S3) hasdimensions 1:3:4:3:1as for the quadratic prolongation.

Proof. According to[6] we have to compute the dimension of the kernel of
Az =id — W12 — Yoz + W12¥3 + W23W12 — W12¥23%12

acting on2' ® 21® 21 (tensor ove€[S3]). Here the braiding ig’ (e, ® ep) = e pa-1®ey,.

To find the dimension of the kernel, one first checks thate, ® ¢, ® e.) = 0 as soon
asa = b or b = ¢. The null space ofiz spanned by these vectors has a complement
V = ®cecV., Where forc € C and(a, b, ¢) a cyclic permutation ofu, v, w), V. has
basis

lea®ep,®eq,epQes Qep,ep @ec ey, eq e @ ep).

One finds that each, is preserved bylz, and A3 is given by this 4x 4 matrix (in the
chosen basis)
1 1 -1 -1
1 1 -1 -
-1 -1 1 1
-1 -1 1 1

)

which is diagonalisable with eigenvalué3 0, 0, 4). Therefore, dimA3(V,) = 1 for all
c € C,and dimA3(21H)®%) = Y, .1 = 3. Hence23 which is defined as the tensor cube
of £21 modulo kerAs is 3D, which is the same as the quadratic prolongation, so that there
are no further relations in degree 3. Notice thatis not a projector, but (1/4)3 is.

In degree 4, we check that Top is not in the kerneAgf(defined similarly) and hence
that there is no further quotient in degree 4. O

Next it is obvious in the presence of a Top form that one can definee, A e A ey =
€apcgTop for alla, b, ¢ € C. This is not yet enough to proceed in to a Hodg@perator
because for that one needs a Riemannian mefgidHowever, this is precisely what comes
out of the theory of Riemannian structures on finite groups and quantum g&jupsm
the ‘braided Killing form’ of the tangent space braided-Lie algebra. $z0fin a suitable
normalisation) it just turns out to bgy = 84, the Euclidean metric in the natural 3-bein
coordinates provided by the, themselves. Using this we now introduce the Hoage
operator

-1 b fon bpc
*(eqy N Neg,) =d €y apbpirby N T T e, A A,
_ -1
- dm 6al"'an ean A A eam+1

for some normalisation constamtg. The ordering of indices is determined so that the total
G-degree (as above) is preservedskyhere every element a@f has order 2 or we would
need inverses on the right-hand side). In our case we take

do=1 d1=2, do=+3, dz=2, ds=1.
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In this way one finds:
Proposition 1.2. The natural Hodge % operator on £2(S3) is

*(1) =Top, *(ey) =2ey Aey Aey, *(ey) =2e, Aey A ey,

*(ey) = 2ey Ney ANey, (e, Aey) = —3_1/2(eu Aey + 2ey Aey),

*(ey N ey)= 3_1/2(ev Aey +2e, Ney), *(ey, Aey)= 3_1/2(ev A ey + 2ey Aey),
*(ey A ey) = —371/2(611) ANey+2e, Ney), k(ey ANey Ney) = —%eu,
*(ey Aey Aey) = —Sey,  kley Aew Aey) = —3ey,

*xTop=—-1

extended as a bimodule map. It obeys %2 = —id.

Proof. By its construction itis clear thak has square-1 and preserves th@-degree. The
latter meansthat if we define(fe, A- - -Aeg, ) = fx(eq A - -Aeg,) forany functionf then
alsox (eq A+ - -Neg, [) = *(Ryy.a,, (fleag N+ - - Neq,) = Rageoa,, (F) k(e A+ - Neg,) =
*(eq, A+ -+ Neg,) f asrequired. Note also that since Top is cyclically invariant there is also
a cyclic invariance ofk. O

Also associated to this metric is a Riemannian covariant derivative, spin connection and
Dirac operator. We will need the latter (coupled to a furtbiél) gauge field) in later sec-
tions. However, for spins,@, one may proceed with only the Hodgeas above. As far
as we know this Riemannian and Hodge structure goes beyond what has been considered
before. Finally, whereas the above results hold (with different normalisations) over any field
of characteristic 0, we also impose a complealgebra structure when we work ovEr
Thus, we define

er=es  d@*) = (=D (da)*

and one may check th& (G) becomes a differential gradedalgebra. This should not be
confused with the Hodge operator above.

2. Wave equationson S3

In this section we write down Lagrangians and solve the associated linear wave equations
for different spins. The spin 1 case means here ‘Maxwell theory’ or 1-forms modulo exact.
This is a linearised version of the noncommutaiivél) gauge theory ifsection 3

21 Sin0
We consider a scalar fiell € C[S3]. From the definitions
(dp)* = €3¢ = e,0°¢ = Ra(8P)eq = —3"Peq = —dop
as it should, and also note that

eq N k(ep) = 284, TOP.
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Hence

1 1 - -
LTop= —2(dp)" A *(d9) = 5 3 (0“P)ea(d")*(ep) = Y (3®)Ra(3"®) Top
a,b a

gives the Lagranian density as
L=-) ¢3¢

for scalar fields. Using the braided-Leibniz rule this is up to a total derivative
L= (Ra$))%¢ == Ra(@0)°¢) =—)_ $(0)°p.

Hence the wave operator on spin 0 is
O=-) 0%"=>) 20"

It is easy to solve this. On a group manifold we would expect ‘plane waves’ associated to
irreducible representations.

Proposition 2.1. The only zero mode of (I is the constant function. In addition thereisone
mode of mass 2+/3 given by the sign representation, and four modes of mass v/6 given by
the matrix elements of the 2D representation of Ss.

Proof. In our caseSs has a trivial representation, which givés= 1 with ‘mass’ 0. Then
it has the sign representation which gives

$(x) =sign(x) = (D', Dpx) =2) (-1 — (-=1)'W) = —12¢(x)

with ‘mass’ 2//3 (herel(x) is the length of the permutation or the numbemob in its
reduced expression). Finally, it has &2 matrix representation

p(u)=((1’ é) p(v)=(_11 _°1>

and each matrix element (for eagly = 1, 2 fixed)
¢ij(x) = p(x)';
is a ‘mass’v/6 since
Ogij (x) = —641j(x) +27) Y p(0) kp(@); = —64sj(x)
a k

asp(u) + p(v) + p(w) = 0. These four waves are linearly independent because the rep-
resentation is irreducible. Sin€& is a 6 x 6 matrix we have completely diagonalised fit,
i.e. its eigenvalues correspond to allowed masse&+/B,+/6 with multiplicities
1,14 O
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Moreover, every function o3 has a unique decomposition of the form
¢ = po + pisign+ pijdij

for some numbergo, p1, pij (real if we demandp = ¢), i.e. a sum of our six waves.
Associated to this decompositon is a projection of any function to its component waves
(or non-Abelian Fourier transform). It is also worth noting thias hermitian with respect
to the usualL? inner product onS3 and bicovariant hence its eigenspace decomposition
must exist and be a decomposition istpx S3 modules (similarly for any groug). In the
S3 case at least it is precisely the Peter—Weyl decomposition obtained in a new way.

We note that there is another useful construction of the projection to thevfGapart,
namely letpp be any function and consider

(b = 2¢’0 - RUU¢O - Rvu¢0~
Then

O¢p = —66 +2)  Ru($) = —64 +2) (2Rupo — Rawdo — Ravudo) = —6¢

so¢ is a solution of mass/6. One should divide by 3 for an actual projection of course.
One may similarly project onto the other waves.

2.2. Sin

For uncharged spié we use the ‘curved space’ Dirac operator introduce@jnThere,
the ‘gamma-matrices’ are given explicitly by

1/-1 1 1/0 o0 1{-2 -1
=3\ 1 —1) "T3\21 2)0 ™T3\l0 o
and obey

2 1
a a A WVa =-(4 _1» a=_1- 1
Va¥s + Vo¥a + 3(a+ 1) = 36— 1) Xa:)/ 1)

There is a natural spin connection corresponding to the Killing-form metri§zoand
including this, one hag3]

1(—-0"—20"—-3  9“—0o"
=0%, — 1=
b= 3( 9 — v —a"—zav—:s)
1(—R,—2Ry, R, — Ry
"3\ R,—R, —R,—-2R,])’
It acts on 2-vector valued functions (spinors)$¥ We note that if we ley = sign acting

by pointwise multiplication then

h,yy=0.
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This should not be viewed as chirality since it acts on the spinor components as functions not
onthe spinorvalues. It does, however, mean that solutions are paired with massive eigenvalue
m going to eigenvalue-m undery. We define mass here as the negative eigenvalfie of

Note, however, thaib2 is a second-order operator (it involv&sg,, R,y) and not merely]
plus a scalar curvature term as in the Lichnerowicz formula.

Proposition 2.2. Jp hasfour zero modes, four massive modes with eigenvalue +1 and four
with eigenvalue —1, related by y .

Proof. To find the solutions we consider first of all spinors of the form

w=<&”>
¢
for some functiorp € C[S3]. The Dirac operator reduces to
1 1
=—=>» Riy=[(-1-=0O
by =—3 Z ¥ ( = ) v

acting on each component. Hence there are four linearly independent zero modes of the
form

[ Rwéi
Vi < ®ij )

induced by the spin 0 waves; of massv/6. We also have a massive mode of eigenvalue
—1from¢ = 1 and+1from¢ = sign from the remaining spin 0 waves, but these solutions
are obvious by inspection. In fact it is obvious that

() ()

are separately solutions of eigenvalug, and similarly when multiplied by sign for eigen-
value+1.

Two further and independent solutions of eigenvak(e are obtained by the similar
ansatz

[ @
w‘(&m)

This time

_( A¢ _p 2
bw—(RwA¢), A =R, 32;Ra

which is easily solved by a linear combination of thejj. The second term of vanishes
onthese an®,¢j; = ¢)ikp(v)kj. But p (v) has precisely one eigenvectoof eigenvalue-1
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and hence contracting with this gives a pair of solutigns ¢jja/ of eigenvalue-1. In the
basis used above, the resulting two massive spinor waves of eigenvhlaee

[ iz
vi= <RUU¢1‘2> '

They are linear independent sineavas irreducible. Similarly, for eigenvalugl if we use
the+1 eigenvector op (v). Altogether we have a complete diagonalisatiof of O

We can consider real or complex spinors (in fact the linear theory works over any field of
characteristic 0). For a general groGpany irreducible representatignsimilarly defines
va-matrices[3] and one can expect a similar method to the above to diagorfalisih
mass spectrum related to the eigenvalugsiofthe representation.

2.3. Zero curvature Maxwell fields and deRham cohomology

For a spin 1 or Maxwell ‘photon’ field we take a 1-forme 2% defined modulo exact
differentials or ‘linearised gauge transformations’. The well-defined curvature is of course

F =dA. 2
For example, the moduli space of flat connections modulo gauge transformations in this

linearised context is the cohomolody* with respect to the noncommutative differential
forms.

Proposition 2.3. The noncommutative deRham cohomology of Sz is
H'=C.1, H'=C.s, H?>=0, H®=C.x0,  H*=C.Top
and exhibits Poincaré duality.
Proof. Here a closed 0-form mearfiswith 0% f = 0 for all a, which meanR,(f) = f
for all a. Buta e C generate all off3 so it means a multiple of 1. Fdd! we consider a

1-form A = A%e, with componentsA“. Each has six values. Similarly, we take our basis
for £22 with

FUU:RMAU+AM—RwAM—AU), FUquvAu—l—Av—Rqu—A”,
F'W =R,A" + A” — R, A" — AV, FY' = Ry,A" + AY — R, A" — A*
for the components in our basis. Hence d is ax28 matrix
id—Ry, R, —id
R, —id id —R,
—Ry id R,—id
—id Ry, id—R,

dy =

We find its kernel, which contains in particular the five independent exact differengials d
(x # e, say) to be 6D. Henc&l = C. Itis easy to see that it is representedsbyhich
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is closed but not exact. Next, the image of d above must be 12D. Fa28l - 22 we
similarly compute

dF = (9" (F" — F") — 3"F"" + F" — F") 1 e,
F@UFY 4 FYY 4 P FW g For  Fety Ly,
+@“(F" = F™M) = 0V FW + F"" — F"")3%ey.

We use here
d(ea A ep) = 3 (K(eq) — *(ep))
and the relations i23. The result can be written as

dF = (Ry(F" — F") — RyF"" + F" + F"’ — F"")1xe,
+ (RyF™ + R, F*" — F — F"") ke,
+(Ry(F" = F™) = RyF™ + F% + F" — F") 3%ey,

which is the 18x 24 matrix

Ry —id id— R, id—R,
dy = —id Ry R, —id
id—R, id—R, —id R,

which is basically the transpose of the matrix above forkence its kernel is 12D and
H? = 0. It also means that the dimension of the space of exact 3-forms as 12. Nef, for
we look at d on our 3-forms. Thus,

dke, =2d(ey Aey Ney) =2e, Ney ANey Aey +2ey ANey Aey Aey, =0

hence % (e,) = 3%¢;, A *(e,) = 2(3 f*)Top is the image of d for any three functions

f%. The 6x 18 matrix of d on(f*, f?, f) is evidently the transpose of the matrix for d

on functions, hence its image is 5D. Note that this image is precisely the space of functions
with zero integral overSz (times Top). ThusH* = C and is represented by a constant
multiple of the Top form. Moreover, the kernel of d2% — 24 is therefore, 13D, hence

H?® = C. Itis easy to see that it is representedsy, In particular, we find Poincaré duality

as stated. O

One may similarly prove the Hodge decomposition of forms in each degree into a direct
sum of exact, coexact and harmonic forms, where harmonic means closed and coclosed as
defined byx.

2.4. Jin 1: Maxwell equations

We now look at the wave operator for spin 1 or ‘Maxwell fieldsimodulo exact forms.
Here the invariant curvatur€ = dA is a linear version of the tru& (1) gauge theory
in the next section. In noncommutative geometry, the latter looks and behaves more like
Yang-Mills theory while the linear theory is more like conventional electromagnetism.
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We note that
(dA)* = (Ra AP + A% ey A ep)* = e A eq(RyAY + A
= (RyA” 4+ RpaA")ep A eq = (A* + RyA™)ep A eq = d(A*)
as it should. Note that in our basis we have
A*e — Ra(ga), F*ab — Rabﬁba-
Then up to total derivatives

LTop= —?F* AXF = —?(dA)* A *(dA) = —?A* A dxdA

gives the Lagrangian and the required wave operator
*adxd : 21 - Q1.

Note that d f“*(e,)) = 2(3° f*)Top and/ 3% f¢ = 0 means that we can indeed neglect
exact 4-forms in these computations, as we do.
One may also write the Maxwell action more explicitly. Thus

*Fuv=_Fuv+2Fvw’ *FUU=FUU—2FwU,

*FUwIFUw—ZFUU, *va:_va+2Fvu
from which

L= —%(FUU(FUU) _ 2Fuv) + FUU(va _ 2Fvu)

4 Fvw(Fuv _ 2Fvw) 4 va(Fvu _ 2va)) (3)

using the relations i24 and up to total derivatives. This is

L — %(|FUU|2 + |FUU|2 + |FUI,U|2 + |va|2 _ Re(FUUFUw + FUUFwU))
from which the action is easily seen to be positive semidefinite. Also, it is tempting to divide
F into two halves related througk much as in the theory of electromagnetism. One such
division is

E = (FUU FUU) B = (Fvw va)

sinceE andB are then rotated componentwise into each othek bjhe action is then the
sum of similar parts fronE and fromB and a cross term.

Proposition 2.4. The zero modes of the wave operator xdxd are precisely the fields of
zero curvature. The equations
dF =0, *dk F = J

have a solution iff J is ‘strongly conserved’ inthe sensed*J = 0and [ J A %6 = 0, and
the solution F is unique. The space of possible sourcesis 12D and spanned by four massive
*d%d modes for each of the masses +/3, +/6 and 3.
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Proof. Putting in the form ofF = dA into the general formulae fok F and d ons22 (as
given in the cohomology computation) we obtaidxdA with ¢, component

RuvAv + Rvqu - Ru(Av + Aw)
+ Ry(A" — AV + AY) + Ry (A" + A — AY) —4A* + A"+ AV =0

and its two cyclic rotations. Equivalently, the matrix feron 2-forms in our standard basis
is

-1 02 0
oo L]0 102
J3Al-2 01 o0
0 2 0 -1

and as a matrix on the column vector of the components, of

*dxd
= do%xod;
1 Ry+R,—4 Rw—Ry,—Ry+Ry+1 Ryy—R,+Ry—Ry+1
:ﬁ Ryu—R,—Ry+Ry+1 R,+R,—4 Ruw+Ry—Ry—Ry+1
Ryy—Ry—Ry+Ry+1 Ryy—Ry+R,—Ry+1 Ry+R,—4

This 18x 18 matrix has a 6D kernel whichis the kernel of @1 — 22 asinProposition 2.3

i.e. it is precisely the closed forms or forms of zero curvature. It means that if we solve
*dxdA = J for F rather than forA we have exactly one solution for eadhin the
image of the wave operator. The image is therefore, 12D which is the dimension of
the image of d :£22 — 2 in the cohomology computation, i.e. we require precisely
that %(J) be exact. On the other hand, for any 2-fofm *dF as given in the proof of
Proposition 2.3s such thatkdF A %6 is an exact 4-form. Indeed, its components are
given by adding up the coefficients #&, in *dF, which add up to a total derivative. This
additional property characterises exact 3-forms in the 13D space of closed 3-forms. Hence
in our casexJ exact is therefore characterised by d = 0 andJ A %6 an exact 4-form.

The latter is the condition that its integral as a 4-form (which means the usual integral of
the coefficient of Top) be 0.

Finally, the other eigenvalues afdxd are easily found using the above matrix repre-
sentation to be-3, —6 and—9 corresponding to a massive mode as stated. The application
of %dxd to these gives the space of possible sources. Each eigenspace is 4D and together
with the zero modes they fully diagonaligeld. O

The two conditions for a strongly conserved source can be written explicitly as
Y 99ue =0, /Zjazo @)
a a

and the second is equivalent 3o, /¢ a total derivative. This is stronger than just the
usual zero divergence condition alone precisely due to a nonti#ifalOther than this
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complication (which can arise in the continuum case just as well) we see that there is a
reasonable theory of ‘electromagnetism’ or ‘electrostatics’. The explicit form of the equa-
tions for F are the Bianchi equationfd= 0 given explicitly in the proof oProposition 2.3
andxdx F = J, which after adding or subtracting the respective Bianchi identities comes
out as

JM — awFUU _ 8UF'UU _ FUU + Fvw + le)

JU — _auFUU _ awaU _ FUU _ Fvw

Jw — 8MFwU _ 8UFUw + FUU + FUU _ FUU).
And if one want the potentiad, this is determined only up to zero modes. These can be
gauge fixed by similarly restricting to strong Coulomb gauge

> atAt =0, /ZA“ =0. (5)

It remains to construct suitable currettsf a recognisable form from such a point of view.
We obtain them by considering scalar fields of mass

Proposition 2.5. If ¢ isan on-shell scalar field of mass mthen

a az 7\ ad m2 T a7 a. T m2 _
J = (3°$)p — (Ra)d ¢+E/¢¢—2a ()¢ —d (¢¢>+Ef¢¢

isa strongly conserved current.

Proof. Here the ‘local’ term is obtained by minimal coupling, i.e. from expandiftH-
A)$)* A (d + A)¢ and has zero divergence. Th& term does not change this fact but
ensures conservation in our strong sense. Thus, from the braided-Leibniz rule we have

Y=Y (@D — Y $0°9° = —(Oh)p + () = 0
wheng is on shell (an eigenvector of the wave operator). And

a - 1. m2 [
D= @90 — 506+ | $¢
which has integral zero. The middle term is a total derivative and does not contrikiite.

Hence we have a strongly conserved current for any on-shell solgtiohthe wave
equation. The mass, 2./3 solutions fromSection 2.1have zero current. The masé
modes, however, have a nonzero current. We use the projection given there of these modes
from functions¢g and take for these the ‘point source’ fodp. Then the corresponding
‘point-like’ massv/6 modes are

¢ = 25x — Sxuv — Sxou-
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Here
$p =45 + S + 0w, Ra(@)p =0
so that we obtain the current for a ‘point-like sourcexat
J¢ =2—Ry(¢pp) — ¢ = 1 — 35, — 3bxa. (6)

These sources are ‘radial’ in the sense that the compadifentthea direction of the source
located atx has support along the ling xa (plus an overall constant value).

These point-like sources at the differentare not independent. It is easy to see that
Jxu + Jw + Jxw = 0 so three point-like sources symmetrically placed about any point
cancel out. Indeed, the above construction gives only four independent sources due to the
two relations

Ju+Jy+Jw=0, Jo+ Jyw+ Jou=0. (7

In fact, these point-like sources span the 4iB,eigenspace okdxd which means that the
corresponding potential for a sourcexain ‘strong Coulomb gauge’ is simply

Ay = —2J,.
Its curvatureF may then be easily computed as
FUUZSXU_gxwa FUU :8XU _5XU7
F' = Sxv — Sxw> F = Sxw — Sxu- (8)

Next we consider ‘dipole’ configurations. We can clearly polarise the above formula for
for a scalar field ad (¢, ¥) where onep is replaced by an independent fiefdsay. We still
have a strongly conserved source as long ag are on shell with the same mass. Here

J@. )+ IW. @) =J@+ V)= J(@) = JW)

is the source for the combined field minus the source for each field separately. Letting
#, ¥ be two ‘point-like’ solutions ak, xb, respectively (withb € C), i.e. a ‘dipole’ atx in
directionb, we havepy = 0 and

T8, = 2Ra(@) Y = (945 — 6)(Sxa+ Sxb) +2 ) Sxc.
ceC
Here the current is positive when ‘lined up’ with This is our first attempt at a dipole
source. Note that there are only four independent sources due to the relations:
J)?;b =R“ )?b;b’ J)?;M+J)?;U+J)?;w = 0’ J)?;b‘i“])?(uz));b(uv)—i_ )?(uv)z;b(uv)2 =0
©)

and one may find the corresponding potential as

Al = —3QJ%, + RTL,).
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Starting from this source, one can then find nicer formulae if one introduces a slightly
modified source (still satisfying the strong conservation conditions)

Ty = T+ 3000 = 515, + T
using the first of the relation®). Explicitly
T =1+ 594 — 6)(8y + Sxa + Sxb + Sxab)- (10)

As before there are four independent configurations here and they span the eigenspace of
*dxd, now of eigenvalue-3. The corresponding dipole potential is therefore

1
Ai;b = _§J;;Zb'
Its curvature can easily be computed and one finds for a dipole centxedrat directed
alongb = u (say)
F;“; = 9(Sxu — Sxvu + 8x — Sxw), F;;L,Jl = 9(Oxuv — Ixu + Sxv — 6x) (11)

F;”;) = 9(_8Xvu — 8xv — Sxuv — Oxw — Oxuv — Sxv),
F;U,lj = 9(fsxu — Sxwu + Oxw — Ox — Sxw — 5xvu)- (12)
This gives an electrostatics picture of some of the massive spin one modes. Note that the

mass here, as for the lower spins, reflects the background constant curvasyria difie
sense of3].

3. U(1) noncommutative Yang—Mills theory

Here we ddJ/ (1) ‘gauge theory’ in the more usual sense. In usual commutative geometry
this essentially coincides with cohomology theory but in the noncommutative case the
curvature

F=dA+AAA (13)
remains nonlinear. It is covariant &— UFU~1 under

A UAU Y+ Uudu™d, A% > A+ U UL (14)

Ra(U)

for any unitaryU (i.e. any function of modulus 1). Here we limit attention to ‘redlin the
senseA* = A. This translates in terms of components as

A% = R,AY,  F® = Ryp(F™)

and implies that* = F is ‘real’.
Our first step is to change variablesdc= @ — 6, i.e. A* = ¢“ —1 and certain operators
Pa = PRy

FUU — pu¢v _ pwéu, FUU — pv¢u _ p”¢w’ (15)
Fvw — pv@w _pw¢u’ FU}U — pw¢v _puéw (16)
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Here®® > (U/R,U)®* transforms covariantly and

@9 = R, P (17)

is our reality constraint. The reality constraint means thfaire determined freely by their
values onu, v, w. It also means that

22 = |92 (18)

are real-valued gauge-invariant functions associated to any gauge field.

3.1. Zero curvature moduli space

In classical geometry the zero curvature gauge fields detect the ‘homotopy’ or funda-
mental group of a manifold. Hence in noncommutative geometry the presence of a moduli
of flat connections is indicative of this. We find it to be nontrivial.

Theorem 3.1. The moduli space of zero curvature gauge fields modul o gauge transforma-
tionisthe union of a 1-parameter positive half-line

A=@u-10, pn=>=0
and six positive cones of R3 of the form
A=®_97 ¢a(b)=l'l'abv aabec?

where 14, > 0 are a matrix of the form

* k% 0 0O 0O 0O
: 0O 0 0], * *x x|, 0O 0 ,
0 0O 0 0O *
* 0 0 0 0 = 0 = O
(i) : 0 0 x|, 0 x 0], *+ 0 O
0 = O *x 0 0 0 0 =

Proof. Given any zero curvature solution we clearly have
pu(pv :pw¢u vaﬁpw, pud)w :pv(pu :pwd)v-

In fact these two equations are equivalent under the reality assumption but it is useful to
work with both forms. Then

Pupu®’ = P (PR, D) = V2L = pupuy®" = pu(®”) Ryu(P") = ®° R, (A])
= pupv®"” = pu(@")RW®" = py(®")Ryy (®") = B* R, (13).
Hence

222 —22)=0, A2'a2=0, A%'(A2)=0
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and the cyclic rotations of these. We also h@\?&ﬁ = 0, etc. Choose any point (for
anonzero configuration) whede’ (x) # 0, say. Then, (x) = A, (x) so either both are zero
or not. Assume the latter (so all components ate nonzero). Thek, (xv) = A, (Xv) # 0
sincei, (x) # 0, andi, (Xv) = A (Xv) sincer, (Xv) # 0, hence all components at are
also nonzero. lterating, we conclude in this case #jat 12 = 12 = u? say, wherew

is a positive constant. The other possibility is that at ewery S3 at most one component
is nonzero, which degenerate case will be handled later.

In the nowhere zero case, we consider the gauge transform

V=1 vw=2"9  yw=2"9  yuw=2"9
1 " W
Uy = 2T ) 2 2HOPTW)
K 0

which is manifestly unitary. Using the zero curvature conditions one may check that indeed
it gauge transformg to % = @V = ¥ = p.

We turn now to the degenerate case where at each point at most one compo#ient of
is nonzero. Note first that we need only be concerned with the mgbixb)}, where
a, b run overu, v, w, since the reality condition determines the values thesn ab, vu.
Moreover, the reality condition then becomes empty. For exandpiéyv) = &% (wu) =
¢“(w) and @¥(w) = @(u), etc. Next, under a gauge transform this matrix goes
to

U (b)
U (ba)

@4y — d9(b)

and because under our degeneracy assumption at most one entry in each column is nonzero,
we can choose this in such a way that all nonzero entries can be gauge transformed onto
the real positive axis. Indeed, we chose

|24 )|

U(e) =U(w) =U(u) =1, Uo) = o4(b)

where there is at most one nonzefd (b) at eachb = u, v, w (and we setU (b) =
1 if there is none). Thus every zero curvature solution of our degenerate type is gauge
equivalent to one where the matrix is given by real nonnegative numifgrsf at most
three entries. These are equal to the gauge-invariant nbjraed cannot be transformed
further while remaining on the positive real axis, so there is one solution for each allowed
matrix.

Precisely which matrices are allowed is determined by the zero-curvature equation.
Writing this out in terms of th&@“ (b) we have

D' W)@’ (v) =P WP (v) = P (U)P" (v),
P )@*(w) =" ()P" (w) = ¢ (V)P" (w),
Q" (W)P () = P (W)P (1) = D (w)P" ()
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for the zero curvature at, v, w. At the other points it yields

' (u)P" (u) = " ()P (v) = " (w)P” (w),
' ()" (w) = @V (W)@ " (u) = ¢" (V)P (v),
DU (V)P (v) = ¥ (W)P (W) = P (U)D™ (u)

which is empty in our case where every column has at most one nonzero entry (it is the
origin of this restriction).

Finally, we enumerate the allowed patterns. (i) Clearly if two rows (i.e. two of the
o', oV, @V are entirely zero) then the third is free for a zero curvature solution. This
is the first set of matrices shown. (ii) If exactly one row is entirely zero,&4ythen the
other two obey

D" ()@’ (v) =0, P (v)P¥(w) =0, DY (w)P’(u) =0

from the first zero of zero-curvature equations. This says thabtheow has no nonzero
entries with the rotate@ row. If one row has more than one nonzero entry then this forces
the other row to be entirely 0 as well and we are back in case (i). Otherwise, neither row can
have more than one nonzero entry which means that we are either in case (i) again or in a
degenerate case of the next case. (iii) The remaining case is when ea@H twg at most

one nonzero entry?(o (a)), say, for some permutatianof u, v, w (anything else would

imply one of the rows was entirely zero, covered above). In this case we have potentially
six possibilities depending ot € S3. Now, for this type of solution the zero-curvature
equation reads

% (0 (a)@’ (b)) =0, if o(a)od) = ab.

Foro = id this meansb®(a)®”(b) = 0 for all a, b, which means that two out of three of

our rows must be zero, which puts us back in case (i) above. Similattyjsfa rotation

u — v — w — u orits inverse then we have three equations forcing two out of three to be
0 and hence in case (i). The three remaining possibilities are whéxes one ofx, v, w

and flips the other two. In this case the relations are empty, i.e. we can freely chose the
potentially nonzero matrix entrieB?(c (a)). This is the second family of positive cones

in R3 stated. Note that the matricesofv, w themselves in their natural representation on
three elements are in this second family. O

Similarly, in terms of the components fandx F as in the previous section, we have
the self-duality equation as

Fvw — )\‘FUU’ le) — A_vau, A= %(1_’_ |\/§)

after collecting terms. Note th&t| = 1 andA® = —1. Under our reality condition only
one of these equations is needed, the other being equivalent. We see that a self-dual 2-form
subjectto our reality condition is therefore determined entirely by an unconstrained complex
function FW,

One could therefore ask for the moduli of self-dual gauge fields or ‘instantons’, i.e.
when such 2-forms can be the curvature of a gauge field. Note that there can be no self-dual
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Maxwell connections other than = 0 due to the unique solution of the Maxwell equations

for F with no source (as seeninthe preceding section). Therefore, one should not necessarily
expect instantons here either. Indeed, putting in the forma &br the U (1) Yang—Mills

theory, we obtain the self-duality equations as

ou®’ =271, ®" + dp, D"

and our ‘reality’ constraint on thé. This appears to have no solutions.
3.2. Yang—Mills action and other extrema

Finally, we take a look at the Yang—Mills action in general. In termg& t¢fie Lagrangian
is exactly the same as that statedSaction 2.4for the Maxwell field, and is therefore
positive semidefinite. In our Yang—Mills case we put in the forn¥dh terms of®.

Theorem 3.2. The (rescaled) Yang—Mills action in terms of the gauge field fluctuation @
and up to total derivativesis

V3

L= —TF* AXF = )\2R,2% — @“(R, @) (Ruyy®") (R, ®") + cyclic
and is positive semidefinite.
Proof. We put the form off’ into the second expression for the LagrangiaSéction 2.4
First, we explicitly put in the reality condition on thé which implies that

L = |FUU|2 + |Fvw|2 _ Re(FUvFvw)
up to a total derivative. Then

|F“”|2 = Ry (®'Ry®" — ®“R,®")(P" R, P’ — PV R, DY)

=2A2Ru 22 4+ A2 Ryr2 — 20™ (R, ®") (R, D) Ry @”

up to a total derivative. Similarly

|FY%12 = A2R 22 + 22 RyA2 — 20¥ (R, ®Y) (R, ®") Ryy @Y.
Finally, we compute

FWFY = (R, ®")®'(Ry®") Ryy®’ + 12 R,yA2

—(Ry®@")DP'(Ry®")Rp®@" — (R, P")DP™ (RyP")Ryy @

Adding minus the real part of this to the other terms and discarding total derivatives gives
the result forL. O

From the physical point of view this result is very significant. It states that when we write
the values ofp“(x) in polar coordinates their gauge-invariant fiekgs(x) contribute like
some kind of massive particle with Lagrangian

Lo = 220"22 + 220V22 + A2 3VA2 + 2202 + 2222 + 2.2 (19)
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and a part given by the sum of the Wilson lodfgs, W,,, W,, atx. Here

W, = q)u(Ru¢v)(Ruvq)u)(Rw(pw)’
W, (x) = @ (x)®" (XU) D" (XUv) D™ (xw) (20)

is the product around a path defined by right translating kifen byv then byu (= u~1)
and then byw. Hereuvuw = e is a relation inS3 in terms of our elements & and such
relations form our elementary plaquettes. One can also introduce homology and homotopy
of allowed paths in the group as defined by filling in via elementary plaquettes, i.e. one
should think of them as ‘pieces of area’ defined by the differential calculus.

We will say more about th& (1) lattice gauge theory defined by the angular parbcf
2 €% inthe next section. At present we concentrate on the real-positive radial vaviatités
‘free particle’ Lagrangiardo(2) (which is quadratic in terms of the functiomﬁ). Note that
ra(x) = Aq(X@), i.€. these variables are really associated to the steps (edges) along allowed
directions in the lattice. They are a hybrid of some kind of ‘length’ or ‘metric’ assignment
to the abstract lattice on which the more conventidinél) gauge theory takes place, and
the real part of the field strength df (they are the modulus of the infinitesimal transport
‘1 + A%(x) dx,” and hence involve both features rolled into one). The noncommutative
Yang—Mills theory factorises into some kind of ‘metric’ theory for thand a conventional
latticeU (1) for the angular variables. Apart frohy there is also an interaction term coming
from the polar decomposition

Wi (x) = Ay () Ay (XU, (XUD) Ay (Xw ) wy (X)),

wherew,, etc. are the convention&l(1)-valued Wilson loops. One may heuristically think

of expressions such a§x§ in Lo as ‘area’ of an elementary plaquette and the products

of the x in the W,, as ‘multiplicative perimiter’. It is interesting that both expressions are

quartic, which is consistent with the idea that holonomies in finite lattice theory go as area

law (this would becomes Wilson’s criterion for confinement if it survived to the continuum

limit, but we are not able to consider this in our finite model). Note also that a flat connection

A corresponds to both a flat(1) connection in the sense of trivial holonomy around the

elementary plaquettes as above and a flat assignment afvthgables when multiplied.

The physical meaning of this is not clear (it comes from the field strength nature bf the

and perhaps suggests to think of them as transition probabilities when suitably normalised).

At any rate, one has a rell, -valued gauge theory for thein the finite geometry as well

as al (1) lattice theory. These are quite general features that apply for other groups also.
In particular, we can look at the pure ‘metric’ sector of the theory where allt(io-

Wilson loopsw,, are constrained to be 1. For example, we can take adbtresal. In any case

the only variables entering are then thand the total action in terms of the nine variables

{Lq(b)} assigned to the link, ab is

S = / L = 22)22(u) 4+ A2 u)A2(v) + A2 (0)22(w) + A2 (w)A2(u) 4+ A2 (w)r2(w)

+ 22()A2 (V) — 24 (1) Ay (V) Ay (V) Ay ()
— 20 (V) Ay (W) Ay (W) Ay (V) — 2y (W) Ay () Ay (1) Ay (W) (21)
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plus the cyclic rotationsa — v — w — v of all terms. The first set of terms (which are
[ Lo) can be written as a symmetric quadratic fabnon the vectoXx2(u), A2(v), A2(w),
A2(u), ..., A2 (w)). Here

00011010 1
000011110
000101011
101000110
D:%llOOOOOll (22)
0110007101
110101000
011110000
101011000

is diagnonalisable ové& and has four eigenvectors of eigenvalukand four of eigenvalue

of 1/2. There is a final mode of eigenvalue 2 which is the vector with all entries1,

which corresponds td = 0. It corresponds to an equal length for all allowed directions.
Because all the eigenmodes are real, we can linearise the theory about this configuration
and our positivity constraints are not affected. On the other hand, tad solution is an
absolute minimum of the total actigh(usingTheorem 3.2 Hence all these fluctuations
increase the energy of the configuration. In particular, we do not appear to have ‘metric
waves’ in the theory for this moderlheorem 3.%ells us that there are other 3-manifolds

of flat connections in families (i), (ii) which are singular in the sense that sopie)

vanish. Their fluctuations (by the theorem) have three modes which keep the action zero but
for which the connection remains singular, while other fluctuations increase the action. It
appears from this discussion (without actually trying to do the integrals) that the ‘quantum
statistical mechanics’ of this theory (i.e. integrals over the ninariables with weighting

e~%) has(A%(b)) > 0. Note also that this ‘metric’ theory of theseshould not, however, be
confused with the actual noncommutative Riemannian geometnyfakirich is based on

spin connections rather th&n 1) connectionsi, but it gives some flavour of the full theory.

4, Quantum electromagnetism

In this section we conclude with some basic aspects of the formulation of the quantum
theory using a path integral approach. We will show that the quantum theory is fully com-
putable. Indeed, functional integration in our setting becomes finite-dimensional iterated
integrals and one can in fact do these integrals. For the present, we also omit physical con-
stants and factors of i in the action since these are matter of taste. Since there is no preferred
time direction one might think that the Euclidean theory is more appropriate.

We begin with the simplest case, a free scalar field

Zy = / Dep & @) ARGV @)+ 4%k T (9)
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for some potential/ (¢) and possible coupling to an external figldOn shell, the current
J is conserved but one should not exactly think thais a Maxwell field. For a more
geometrical theory of a particle moving in a background potential one should use the gauge
theory and minimal coupling method (see below). The main feature of the above is that
it is fully computable by elementary means, depending on the potential and external field.
Of course there is nothing stopping from one doing some of these functional integrals (and
those below) using Feynman diagram methods and a perturbative approach, which may be
useful (depending on the potentid).

Equally elementary, we can quantise the Maxwell field with a classical external source
J. Thus,

Z[J] :/DAe/(dA)*A*(dA)JrA*A*J

where we have an infinite gauge degeneracy. This can be handled in several ways. For
example, we regularise integrals to a finite volume of field strength of modulds and
take A to infinity. Gauge symmetry means a factf but in the ratios involved in vacuum
expectation values this cancels, i.e. we can regulate and remove the regulator in all ratios
with ease. More geometrically, we have already seen that the strengthened Coulomb gauge
(5) in Section 2.4is a complete gauge fixing. Hence we can impose these by integrating
over a functional Lagrange multiplier field (Faddeev—Popov ghosts) foy the“A* =0
condition, and an additional constant Lagrange muiltiplier for the gigbgl, A* = 0
condition.

On the other hand, neither of these conventional formalities are needed in our finite case.
This is because we know that the operakakxd in Section 2.4while not symmetric, can
be diagonalised via Gram—Schmidt to orthonormal eigenveet®ay,i = 1, ..., 12 for
the 12D space of nonzero eigenvalue. Being eigenvectors these are also in the image of
the operator and can therefore be viewed either as strongly conserved sbarcgauge
potentialsA in the strong Coulomb gauge. We have seen in our case that there are four
eigenvectors each of eigenvalu@, —6, —9. Clearly, if we writeA = a¢; andJ = Ji¢;
and the eigenvalues ake then

7] = /d12ai Phla 428,01

We need here that* A xJ = A*%e, A JP ke, = 2R,(A%J%)Top so that its integral is the
usuali? inner product orss.
For a less trivial theory one can also couple the two theories above, thus

L = (dg)* A (dg) + (dA)" A *(dA) + A™ A J(9).

This is not gauge-invariant (except whenis on shell) but it can still be functionally
integrated over.

Finally, and more interesting than the essentially linear or Maxwell theory is the fully
nonlinear Yang—Mills theory even in tlié(1) case. Here we have been rather more careful
to impose the unitarity condition (because it has more of an impact) in our treatment in
Section 31n particular, we really do not need to gauge fix sinceliti&)® symmetry gives
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a finite volume(2:7)8. Similarly, in this case there is a covariant derivative under a gauge
symmetryp — U¢ for charged scalar fields, e.g.

Dagp = (d+ Ao, Da¢ > d(U¢) + (VAU + UdU HU¢ = UD4¢.
Then
L=F"A%F+ (Dap)" A *Dagp + V($9)

is the Lagrangian for the coupled system with some poteVitisiVe have used part of this for

the source/ (¢) and this is its proper context. Of particular interest is the pure Yang—Mills
theory. In lattice gauge theory, even foi(1) one expects confinement as an artefact of
the lattice regularisation. In our noncommutative geometrical version of lattice theory this
appears as thé A A term which does not vanish precisely because the differential calculus
is noncommutative. Thus it enters in the same ‘form’ as in non-Abelian gauge theory but
for a different reason, but one may logically expect similar behaviour. Here we only want
to note that our elementary ‘Wilson loops’ are in fact gauge-invariant and our result in
Theorem 3.Zor the form of their action makes it particularly easy to compute them as
follows. We define

Z[/-'Lu’ Uy, l/Lw] — /dA e/L07/LuWu*/LUWU*MwWw’

whereLgis thex, part of the Lagrangian given ({19). We can then compute the expectation
values of elementary Wilson loops as
)

o1
(Wa(x)) =—-2 e

(2).

M=y =Hy=1

This is a matter of nine complex or 18 real integrals for the figlél&) which determine the
gauge configuratiod = & — 6 (as explained in the proof dftheorem 3.1 We compute
the detailed form of the theory now (actual numerical computations will be attempted
elsewhere).

Thus, given the nin@“(b) for a, b € C, the otherd?(x) are determined by the reality
conditions, so we have only to integrates over all the possibles complex values for these
nine. Next we adopt polar coordinates ag lreorem 3.2

D (b) = Ag(b) €9°®) | A, (b) € [0, 00), 6%(b) € [0, 27).

Including the Jacobian determinant, the partition function becomes
'S} 2
7 - 2—9/ 492 efLomf 4% e/ Wat Wot Was
0 0

Here 12 = dA2(u) - - - dA2 (w) as inSection 3.2and 9 = do* (u) - - - do™ (w). We omit
the p for simplicity. Next we write the Lagrangian in this integral explicitly in terms of
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these variables. Thus

% / Wy + Wy + Wy = A% @)A" (WA ()AY (1) cos0" () — 0° (v) + 0% (v)
— 0" (u)) + A (V)AL (WA (W)LY (v) oSO (v) — O° (w)
+0"(w) — 0™ (v)) + A (WAL WA  (u)A™ (w) cosO* (w)
—0"(u) + 0" (u) — 0" (w))

plus the cyclic rotations — v - w — u.
We concentrate on theintegrals, i.e. we write

o0
7 = / do2e/ Lo 7,
0

whereZ, is the partition function for th&/ (1) lattice gauge theory defined by theariables

with the variables held fixed. Next, gauge symmetry means that the Lagrangian here does
not in fact depend on all nine of tifeparameters. In fact, it depends on only four, which
can be made manifest by the transformation matrix:

0o 1.1 0 0 -1 0 -1 0
-10 0 1 1 O O -10
0o 0o-11 0 1 -1 0 O
0O 0-10-1 0 O 1 1
0o 0 0 061 0 O 0O
0O 0 0 00 12 0 0O
0O 0o 0o 0o 0O 0 1 0 O
0O 0o 0o 0o 0 0o O 1 O
0O 0 0 00 O O o0 1

Explicitly, we replace th¢o“ (b)} by

01=0"(v) — 0" (w) + 6" (w) — 0" (v),  62=0"(u) — 0" (v) +6°(v) — 6" (w),
03=0"(w) — 0" (u) + 0" () — 0" (w),  O4=0"(v) — 0" (w) + 6" (w) — 6" (v)

and the remaining five
5 = 0"(v), b = 0" (w), b7 =0"(u), g = 0" (v), by = 0" (w)
are unchanged. The determinant for this change of variables is 1. We also write

A=Ay ()Ay (VA (V)Ay (1), A2 = Ay (V) Ay (WA, (W) Ay (v),
A3 = Ay (W)Ay (W) Ay, (U)Ay (W)
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for theA-holonomy expressions as (81). Similarly

A=Ay (W) Ay (V) Ay (V) (1), A5 = Ay (V) Ay (WA (w)A, (v),
he = Ay (W) Ay () Ay (W) Ay (W), A7 = A () Ay (V) Ay (V) Ay (1),
Ag = Ay (V) Ay (W)Ay (W)Ay(v), Ag = Ay (W)Ay (U)Ay (u)Ay(w)

for their cyclic rotations. Then we arrive at our final result
2
Z) = f dbs - - - ddg / dby - - - dgy e 5 01.02:03.00) (23)
0 D

where

%SK = A1C€0S(01 — 62 4 63) + A2 C0S(61) + A3COS(—02 — B4) + L4 COS(62)
+ A5 COS(—601 — 64) + Ag COS(03)
+ A7C0S(—61 — 63) + Ag COS(64) + Ag COS(02 — O3 + 64)

and where the domaib is an affine transformation iR* of the hypercube [(@7)4, i.e. it
has the form

61 c1
(7] 4 c2
= M([0, 27)™) + ,
03 3
04 cq

where the linear transformation of the hypercube is given by

0O 1 1 O
-1 0 0 1
M = (24)
0 0 -1 1
0 0 -1 0

and the offsets (which are the only parts that depen@on ., 6g) are
c1=—0g—6g, c2=05—0g c3=05—67, ca=—65+0g+0s. (25)

Clearly, one may compute the domain of integratigiq0, 2r7)*) for the variable®) =

0; — ¢; and thereby do the fod integrations followed by more trividk, - - - , 09 integrals.
Without doing the actual integrals, it is clear at this point that one obtains here some form
of Bessel function (if we put an i in the action) ﬁé” do 4% = 27 Jo(1). Similarly
higher Bessel functions for expectation values ofth@) Wilson loopsw, (x), etc. This

is a similar situation as conventional lattice gauge theory. In addition, we have the ‘metric’
A integrals in our theory as discussed3action 3.2
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